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In a previous paper [Ca1], the author studied a low density limit in the periodic
von Neumann equation with potential, modified by a damping term. The model
studied in [Ca1], considered in dimensions d \ 3, is deterministic. It describes
the quantum dynamics of an electron in a periodic box (actually on a torus)
containing one obstacle, when the electron additionally interacts with, say, an
external bath of photons. The periodicity condition may be replaced by a
Dirichlet boundary condition as well. In the appropriate low density asympto-
tics, followed by the limit where the damping vanishes, the author proved in
[Ca1] that the above system is described in the limit by a linear, space homo-
geneous, Boltzmann equation, with a cross-section given as an explicit power
series expansion in the potential. The present paper continues the above study in
that it identifies the cross-section previously obtained in [Ca1] as the usual
Born series of quantum scattering theory, which is the physically expected
result. Hence we establish that a von Neumann equation converges, in the
appropriate low density scaling, towards a linear Boltzmann equation with cross-
section given by the full Born series expansion: we do not restrict ourselves to a
weak coupling limit, where only the first term of the Born series would be
obtained (Fermi’s Golden Rule).

KEY WORDS: Density matrix; low density limit; time-dependent scattering
theory; Fermi’s Golden Rule; oscillatory integrals.

1. INTRODUCTION

The present paper is the continuation of a previous work [Ca1] of the
author (see also the announcement of a weaker result [CD]). In [Ca1], it
is proved that a von Neumann equation with a damping term converges
along some low density limit towards a linear, space homogeneous, Boltzmann



equation. We recall below the precise asymptotics and convergence results
obtained in [Ca1] (Theorem 1 below). However, the cross-section
exhibited in [Ca1] has a rather complicated expression (see (2.11)), and its
connection with the usual Born series is by no means clear. In this context,
the present paper identifies the cross-section appearing in [Ca1] as the
usual Born series of quantum scattering. It is important to note that the
present paper obtains, along some low density asymptotics in a von
Neumann equation, a Boltzmann equation with cross-section given by the
full Born series. In the simpler case of a weak coupling asymptotics, the
resulting cross-section would reduce to the first term of the Born series
expansion. This point also answers questions raised at the physical level in
[Co], see point c) of the introduction below.

1.1. The Physical Context

Let us now give the context in which the present paper takes place.
The general question is the following: let us consider the quantum evolu-
tion of an electron (or a beam of non-interacting electrons) in a field of
obstacles. This situation is a priori described by the Schrödinger equation,
or more generally the von Neumann equation, where a perturbing potential
describes the interaction of the electron with the obstacles. To simplify
things, one may assume that each obstacle, labelled by the index j ¥N and
centered around the position Xj ¥ Rd (throughout the paper we shall
assume d \ 3), creates the potential lV(x−Xj) at x ¥ Rd, where V is a
fixed, real-valued profile, and l ¥ R is a coupling constant. Here and in the
sequel, we always assume that V is small, smooth, and decaying enough so
that a reasonable scattering theory is at hand for the potential V. Hence the
electron undergoes the influence of the total potential,

Vtot(x)=l C
j
V(x−Xj) (1.1)

at x, where the sum is locally finite (say). Physically, such a situation is
expected to describe the evolution of an electron in a distribution of
impurities, and a typical application of such a model is the analysis of
semi-conductor devices (see [MRS], or also [Fi]).

Now, the solution of the Schrödinger, or the von Neumann equation,
with potential Vtot is often too complicated and one looks for asymptotic
models. The typical regime under interest considers large times and small
values of the potential: in such regimes, it is physically expected (see [Pa],
[VH1,2,3], [KL1,2], [Ku], [Pr], [Vk], [Zw], or also [Ck], see [Fi] for
recent developments, see also [KPR] for a more mathematical but still
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formal approach) that the dynamics of the electron may be asymptotically
described by a linear Boltzmann equation of the form,

“tf(t, n)=F
R
d
[S(n, k) f(t, k)−S(k, n) f(t, n)] dk (1.2)

in the space homogeneous case, or more generally,

“tf(t, x, n)+n ·Nxf(t, x, n)

=F
R
d
[S(n, k) f(t, x, k)−S(k, n) f(t, x, n)] dk (1.3)

in the space inhomogeneous case. Here, f(t, n) (respectively f(t, x, n))
represents the probability at time t ¥ R that the electron has the momentum
n ¥ Rd (and possibly position x ¥ Rd). Also, the right-hand-side of (1.2) (as
well as (1.3)) has the usual structure of a gain term plus a loss term: at time
t (and possibly position x), the electron may jump from the momentum k
to the momentum n, with probability S(n, k), hence the contribution
> S(n, k) f(t, k) dk in (1.2)—this is the gain term—but it may symmetri-
cally jump from the momentum n to another momentum k, with the prob-
ability S(k, n), hence the contribution − > S(k, n) f(t, n) dn in (1.2)—this
is the loss term. The quantity S(n, k) is usually called the cross-section.

The physically relevant value of the cross-section S depends on the
exact asymptotic regime considered in the original Schrödinger, or von
Neumann equation. One distinguishes two main regimes. In the weak
coupling limit (also known as the Van Hove limit), the obstacles are dis-
tributed so that one typically finds one obstacle per unit volume, but the
coupling constant l in (1.1) is small, and long times of the order 1/l2 are
considered. The mathematically relevant limit is lQ 0. Since each encoun-
ter with an obstacle has an effect of the order of magnitude l2 on the
dynamics (this is a consequence of the Fermi Golden Rule (1.7) below), the
weak coupling regime corresponds to a case where the electron typically
undergoes many ‘‘collisions’’ with the obstacles per unit time in the new
time scale (typically 1/l2), but each ‘‘collision’’ affects the electron by a
small quantity of the order l2, so that the total effect of the obstacles on
the dynamics of the electron is of the order 1. The second regime is the low
density regime, also known under the name of Boltzmann–Grad limit. Here
obstacles are distributed so that one finds a small amount e (eQ 0) of
obstacles per unit volume, and long time scales of the order 1/e are con-
sidered. Also, the coupling constant l is kept of the order 1. In this regime,
the electron typically meets one obstacle per unit time in the new time
scale, but each encounter with an obstacle has immediately an effect of the
order 1 on the dynamics.
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These two different regimes are expected to give two different cross-
sections. In the low density regime, one expects that the dynamics of the
electron is indeed asymptotically described by an equation of the form (1.2)
(or (1.3)), the relevant cross-section S satisfying in this case S=S ld where,

S ld(n, k)=2pd(n2−k2) |T(k, n)|2 (1.4)

Here T is the usual T-matrix of quantum theory (see [RS]), naturally
associated with the potential lV, and expressed in the momentum
representation. It is defined as,

S(n, k)=d(n−k)−2ipT(n, k) (1.5)

where S is the scattering operator associated with lV (again in the
momentum representation). It is known [RS] that |T|2 admits a power
series expansion in terms of the potential lV, called the Born series, whose
first term is given by,

|T(n, k)|2=l2 |V̂(n−k)|2+O(l3) (1.6)

where V̂ is the Fourier transform of the potential V. In the weak coupling
regime on the other hand, one also expects that the dynamics of the elec-
tron is asymptotically described by an equation of the form (1.2) (or (1.3)),
the relevant cross-section S satisfying in this case S=Swc where,

Swc(n, k)=2pd(n2−k2) |V̂(n−k)|2 (1.7)

This equality is known under the name of ‘‘Fermi Golden Rule’’. Such
cross-sections are routinely considered in the modelling of semi-conductor
devices ([MRS], [Fi]). We emphasize in passing that Swc somehow
corresponds to the lower order expansion of S ld in the potential.

1.2. Mathematical Derivations

Numerous mathematical works have rigorously studied the conver-
gence of the Schrödinger equation towards equations of the form (1.2) or
(1.3) in the weak coupling limit, and the cross-section (1.7) is indeed derived.
We wish to quote the stochastic approach developped in [Sp], [HLW],
[La], [EY1,2] (see also the more recent work [PV], where the authors
consider a different stochastic framework). All these works consider the
case of randomly distributed obstacles (Xj —Xj(w), where w is the
stochastic parameter and the Xj’s are as in (1.1)), and the convergence
holds in expectation with respect to w, or almost surely. Obviously, one
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key difficulty in such a rigorous derivation lies in the fact that the original
time-reversible Schrödinger equation is expected to converge towards the
time-irreversible Boltzmann equation, which justifies that the convergence
can by no means hold in any ‘‘strong’’ sense (e.g. without removing some
exceptional zero-measure set).

For a different approach, handling the low density limit, we also wish
to quote [Dü]: here the author considers the quantum dynamics of an
atom (or a system with a finite number of energy levels), coupled with a
Fermi gas of electrons at thermal equilibrium. The reduced dynamics of the
atom is proved to be asymptotically described by a quantum dynamical
semi-group involving a linear Boltzmann operator, with cross-section given
by the appropriate Born series expansion. In the same spirit, but for dif-
ferent kind of limiting equations, let us mention the work [CEFM], where
the dynamics of an electron coupled to a system of harmonic oscillators is
proved to converge, in the appropriate scaling limit, towards a Fokker–
Planck equation.

Related works in a deterministic framework are [Ni1,2], or also [Ca3],
but these works do not give the convergence towards a true Boltzmann
equation of the form (1.2) nor (1.3).

1.3. The Present Model: Description of the Regime, Results

Obtained in [Ca1]

The above mentioned works [Sp], [HLW], [La], [EY1,2] thus assert
that, outside some ‘‘exceptional configurations’’ of the obstacles, the con-
vergence of the associated Schrödinger equation towards a Boltzmann
equation indeed holds. It is natural to ask whether, for one particular,
deterministic, configuration of the obstacles, the same convergence holds.

In this context, the first key motivation for the present work together
with [Ca1] is to study the convergence of the von Neumann equation
towards the linear Boltzmann equation (1.2) in one particular situation,
namely the periodic one.

As it is clear below, a second strong motivation is to give a rigorous
basis to the physical approach of conventional scattering theory (see e.g.
[CTDL]): here, computations are usually performed on systems with
discrete spectrum (e.g. the Laplacian in a finite box), and the size of the
box is eventually set to infinity to recover systems with continuous spectrum.
This procedure of ‘‘taking the size of the box to infinity’’ is questioned
from a physical point of view in [Co], and the present paper actually
gives a mathematical answer to the questions raised in [Co]. We readily
mention that all the results stated here and below in the periodic case
hold as well when the periodic boundary conditions are replaced by

From the von Neumann Equation to the Quantum Boltzmann Equation II 1201



Dirichlet boundary conditions, see [Ca1] (the periodic framework is
chosen only for notational convenience: the eigenfunctions exp(inx) arising
in the periodic case simply have to be replaced by cos(nx) in the case of
Dirichlet boundary conditions, hence the need for extra, but unimportant,
symmetrisations in the latter case).

The model is the following: as in conventional scattering theory (see
[Ck], [CTDL], [Boh], see also [Co]), one considers an electron in a large
periodic box of size L, [−pL, pL]d … Rd, with periodic boundary condi-
tions. One smooth potential with compact support of size 1 is set at the
origin, so that the density of obstacles readily is of the order 1/Ld. Since we
wish to consider a low density limit, times of the order Ld are considered in
[Ca1]. In the Fourier space (indexed by integer numbers n ¥ Zd, since the
original model is posed in a box of finite volume), the usual von Neumann
equation describing the dynamics of the electron is,

i
Ld
“tr

L(t, n, p)=
p2−n2

L2
rL(t, n, p)

+
l

Ld
C
k ¥ Z

d

5V̂ 1n−k
L
2 rL(t, k, p)−V̂ 1k−p

L
2 rL(t, n, k)6

(1.8)

(one recognizes the Fourier transform of usual commutator with −Dx+lV(x)
on the right-hand-side of (1.8)—see [Ca1] for details on the normaliza-
tions). The initial datum in (1.8) is taken of the form,

rL(0, n, p)=
1
Ld
r0 1 n
L
2 1[n=p] (1.9)

where r0 is a given, smooth and decaying profile. Here, rL(t, n, p) is the
so-called density matrix of the electron, indexed by the scaling parameter
L: the diagonal values rL(t, n, n) represent the probability, at time t, that
the electron is in the eigenstate (2pL)−d/2 exp(in ·x/L) of the Laplacian
−Dx in the periodic box [−pL, pL]d, and the off-diagonal values
rL(t, n, p) (n ] p) represent correlations between the various occupation
numbers rL(t, n, n). The initial datum (1.9) is a generalization of the usual
thermodynamical equilibrium with inverse temperature b for the free von
Neumann equation (i.e. Eq. (1.8) for V̂ — 0), for which r0(n)=exp(−bn2).
Also, V̂ represents the usual Fourier transform of the potential V, defined as,

V̂(n)=F
R
d
V(x) exp(−in ·x) dx 1=F

[−pL, pL]d
V(x) exp(−in ·x) dx2

(1.10)
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and the last equality comes from the assumption of compact support on V.
The low density limit in (1.8) corresponds to the limit LQ. in (1.8).

This is where some care has to be taken. Equation (1.8) describes the
quantum evolution of an electron on a torus. This is a highly specific, as
well as a non-generic case. It is actually proved in [CP1, 2] that the low
density limit LQ. in (1.8) does not give the desired Boltzmann equation
(1.2) with cross-section (1.4): mathematically speaking, one needs some
extra, regularizing parameter, and this turns out to be a physical necessity
as well, see [Hu]. Indeed, as readily seen on (1.8), the periodicity gives rise
to specific phase coherence effects: roughly speaking, the solution of (1.8)
gives rise to highly oscillating factors exp(iLd−2[n2−p2] t), so that the
contribution of the set of integer numbers n and p such that n2=p2 turns
out to abnormally dominate the asymptotic process. In [CP1, 2], this effect
is precisely quantified in terms of arithmetic considerations, and the main
result is that the asymptotic dynamics LQ. in (1.8) remains time-
reversible. We mention in passing that the above mentioned non-conver-
gence result [CP1, 2] in the fully periodic case is somehow not surprising:
the low density limit for a classical particle moving through a periodic dis-
tribution of hard spheres does not converge towards the physically expected
Boltzmann equation neither, as proved in [BGW], contrary to the case of
a classical particle moving through random obstacles, treated in [BBS].

For all these reasons, the exact model in which the low density limit is
performed in [Ca1] is a modified version of (1.8). To be specific, we
modify our model so as to take into account an additional interaction of
the electron with, typically, an external bath of phonons, at least at a phe-
nomenological level. Physically, such an interaction leads to an exponential
decay of both the diagonal and the off-diagonal part of the density-matrix,
but the decay in the off-diagonal part typically is much quicker than that of
the diagonal part. Hence, following [NM], [SSL], [Boy], [Lo], this leads
to the introduction of an additional damping term in (1.8), measured by
the small damping parameter a > 0, and acting on the off-diagonal part of
the density matrix only. Thus, in [Ca1], we start with,

i
Ld
“tr

L, a(t, n, p)

=
p2−n2

L2
rL, a(t, n, p)−iarL, a(t, n, p) 1[n ] p]

+
l

Ld
C
k ¥ Z

d

5V̂ 1n−k
L
2 rL, a(t, k, p)−V̂ 1k−p

L
2 rL, a(t, n, k)6 (1.11)
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with initial datum given by (1.9) as well. Here, we emphasize the depen-
dence of the density matrix upon the two scaling parameters L and a. Note
that the introduction of a damping term readily makes the original model
(1.11) in which we pass to the limit time irreversible. We mention in passing
that the additional damping term involved in (1.11) satisfies the so-called
Linblad-property ([Li]), as proved in [Ca1].

Associated with the sequence of occupation numbers rL, a(t, n, n), we
build up the natural distribution,

fL, a(t, n) := C
n ¥ Z

d
rL, a(t, n, n) d 1n− n

L
2 (1.12)

The main theorem obtained in [Ca1] asserts the following (we refer to
[Ca1] for more precise and complete statements),

Theorem 1 ([Ca1]). Let fL, a be as in (1.12), where rL, a solves
(1.11) with initial datum r0. Let D \ d+1 and assume the initial datum r0

and the potential V have the following regularity,

||r0||TD(Rd) :=||(1+n2)D/2 r0(n)||L.(Rd) <.

||V̂||S2D(Rd) := C
|c| [ 2D

||(1+n2)D “cnV̂(n)||L.(Rd) <.
(1.13)

Assume also that |l| [ l0 for some small enough l0 > 0 whose value only
depends upon the norms of r0 and V̂ in the above spaces. Assume finally
that d \ 3. Then,

(i) the following non-commuting limit exists in C0(R+t ; [S2D(R
d)]g−

weak*), as well as [L1(R+t ; TD(R
d))]g −weak*, where Eg denotes the dual

space of the Banach space E,

f(t, n)=lim
aQ 0

lim
LQ.

fL, a(t, n) (1.14)

(ii) f satisfies in the distribution sense an equation of the form,

“tf(t, n)=F
R
d
[S1(n, k) f(t, k)−S2(n, k) f(t, n)] dk

f(0, n)=r0(n)

(1.15)

for some cross-sections S1 and S2 whose value is given as an explicit power
series expansion in l (see (2.7) below for the explicit formulae).
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1.4. Statement of Our Main Theorem

In this context, the main theorem of the present paper is the following,

Theorem 2. Under the assumptions of Theorem 1 above, the cross-
sections S1 and S2 appearing in Eq. (1.15), as derived in [Ca1] (see (2.7)
below) coincide with the low density cross-section S ld defined above see
(1.4)), in the sense that,

S1(n, k)=S ld(n, k)=2pd(n2−k2) |T(k, n)|2

F
R
d
S2(n, k) dk=F

R
d
S ld(k, n) dk=2p F

R
d
d(n2−k2) |T(n, k)|2 dk

(1.16)

where T is the T-matrix associated with lV in the momentum representation.

The remainder part of the present paper is dedicated to the proof of
the main theorem.

The interested reader may find in [Ca2] a review about the present
work together with [Ca1], as well as about the non-convergence result
obtained in [CP1, 2].

2. PROOF OF THE MAIN THEOREM

The proof is divided into two steps. First we recall the explicit value of
the Born series expansion of the T-matrix associated with lV, and also
recall the explicit value of the cross-sections S1 and S2 as derived in [Ca1]
(Property 1). We introduce in passing the notations used throughout the
paper (Defnition 1). The idea is that both the T-matrix and the two cross-
sections S1 and S2 involved in (1.15) are naturally given as power series in
l (or, equivalently, lV). Secondly, we prove in several steps that the above
mentioned series coincide term by term (Lemma 3). This identification relies
on two facts: on the one hand, the power series in l which define both S1

and S2 can be built up using a simple iteration procedure (see (1.24)–(1.25)
and Lemma 2). On the other hand, the implementation of this iteration
procedure is greatly simplified upon the use of a Lemma (Lemma 1)
identifying the sum of certain oscillatory integrals naturally arising in the
formulation of the problem.

2.1. Explicit value of the Born series expansion, the cross-sections

S 1 and S 2

We begin with some notations,
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Definition 1. (i) Let V̂ be the Fourier transform of V as defined in
(1.10). Then, for any n, k1,..., kl, p in Rd, we define,

V̂l+1(n, k1,..., kl, p) :=i l+1V̂(n−k1) V̂(k1−k2) · · · V̂(kl−1−kl) V̂(kl−p)
(2.1)

Note that, since V is real valued, and if g denotes complex conjugation, we
have,

[V̂l+1(n, k1,..., kl, p)]g=(−1) l+1 V̂l+1(p, kl,..., k1, n) (2.2)

(ii) We introduce the distribution over R2d,

D(n, p) :=F
+.

s=0
exp(i[n2−p2] s) ds (2.3)

It satisfies,

D(n, p)=pd(n2−p2)+ipv 1 1
n2−p2
2 (2.4)

Remark 1. Upon using standard theorems about composition of
distributions (See [Hö]), the Dirac mass and principal value involved in
(2.4) are easily seen to be well-defined, at least in dimensions d \ 3. The
identity between the oscillatory integral on the left-hand-side of (2.4) and
its right-hand-side is easily proved as well. However, as we will see below,
the cross-sections S1 and S2 derived in [Ca1] naturally involve products of
such distributions, and a typical product is of the form D(n, k1) D(n, k2) · · ·
D(n, kl), say, l being a large integer parameter. One key difficulty handled
in [Ca1] is to prove that such products are indeed well-defined as distribu-
tions (this is not a consequence of the standard theorems about products of
distributions having certain properties on their wave fronts), and to control
the regularity of these products in, say, Sobolev spaces with negative
exponents in terms of l: the exponent should not grow too fast with l. Both
tasks are accomplished in [Ca1], upon considering these products as
oscillatory integrals, and upon explicitely using the fact that the phase in
(2.3) is quadratic. We give in Lemma 4 of the appendix a version of the
needed regularity result that will be sufficient for our purposes. L

With these notations, we are able to formulate both T and S1, S2, as
power series expansion in l,
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Proposition 1. Under the assumptions of Theorem 1, we have,

(i) The T-matrix associated with lV admits the following power
series expansion,

T(n, k)= C
l \ 0
l l+1Tl(n, k)

Tl(n, k) :=−i F
R
ld
D(k, k1) D(k, k2) · · ·D(k, kl)

×V̂l+1(n, k1,..., kl, k) dk1 · · · dkl

(2.5)

with the obvious convention that T0(n, k) :=V̂1(n, k). This equality holds in
the distribution sense.

(ii) As a consequence, the cross-section S ld defined in (1.4) admits
the power expansion, valid in the distribution sense,

S ld(n, k)=2pd(n2−k2) C
l \ 1
l l+1S ldl (n, k)

S ldl (n, k) :=C
l−1

s=0
F
R
(l−1) d
(−1) s+1 D(k1, n) · · ·D(ks, n) D(n, ks+1) · · ·D(n, kl−1)

×V̂l+1(n, k1,..., ks, k, ks+1,..., kl−1, n) dk1 · · · dkl−1
(2.6)

Here, the convention is used that the integrand reduces to D(n, k1) · · ·
D(n, kl) V̂l+1(n, k1, ..., kl−1, k, n) in the case s=l−1, and similarly if
s=0.

(iii) The distribution f=limaQ 0+limLQ.fL, a of Theorem 1 satisfies
indeed an equation of the form (1.15), in that it satisfies in the distribution
sense,

“tf(t, n)= C
l \ 1
l l+1Ql(f)(t, n)

Ql(f)(t, n) :=(2 Re) C
e1,..., el

(−1) e1+· · ·+el F
R
dl
D(n− e1 k1, n+ẽ1 k1)

×D(n− e1 k1− e2 k2, n+ẽ1 k1+ẽ2 k2) · · ·

×D(n− e1 k1− · · · − el kl, n+ẽ1 k1+·· ·+ẽl kl)

×[iV̂(k1)] · · · [iV̂(kl)][iV̂g(k1+·· ·+kl)]

×f(t, n− e1 k1− · · · − el kl) dk1 · · · dkl (2.7)
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where the sum carries over all values of (e1,..., el) ¥ {0, 1} l, and the
convention ẽi=1− ei is used.

(iv) Formulae (2.7) may be rewritten in the compact form,

“tf(t, n)=−il F
R
d
[V̂(n−k) g(t, k, n)−V̂(k−n) g(t, n, k)] dk (2.8)

up to introducing the auxiliary distribution,

g(t, n, p) :=−il D(n, p) V̂(n−p)[f(t, p)−f(t, n)]

−ilD(n, p) F
R
d
[V̂(n−m) g(t, m, p)−V̂(m−p) g(t, n, m)] dm

(2.9)

Remark 2 (regularity). (i) It is well known that the Born series
expansion (2.5) converges pointwise for l small enough and V smooth
enough (e.g. V of Rollnik class in dimension d=3). Since the asymptotic
process performed in [Ca1] and leading to formulae (2.7) anyhow requires
an important regularity on V, we shall not try to give optimal estimates.
We simply mention the following: as mentioned in Theorem 1, for any
given D \ d+1, we have the regularity f(t, n) ¥ C0(R+t ; [S2D(R

d)]g) as
well as f(t, n) ¥ (L1(R+t ;TD(R

d))g (see Theorem 1 for the definition of the
spaces TD(Rd) and S2D(Rd)). Using this regularity result as well as Lemma
4 given in the Appendix, it is easy to establish the following estimates, valid
for any smooth test function f(n, k) respectively k(n),

:F
R
2d
d(n2−k2) Tl(n, k) f(n, k) dn dk :

[ C(D) l ||V̂|| l+1S2D(R
d) ||f||SD(R2d) (2.10)

:F t
0
ds F

R
d
Ql(f)(s, n) k(n) dn :

[ C0C(t, D) l ||V̂||
l+1
S2D(R

d) ||k||S2D(Rd) (2.11)

for some universal constant C(t, D) depending on t and D only, and some
constant C0 depending on the norms of r0 and V̂ in (1.13). These estimates
are enough to give a (weak) sense to the series defining S ld as well as
; l l+1Ql, for l small enough.

(ii) Formula (2.6) is an obvious consequence of (2.5). In turn, (2.5) is
derived in many textbooks, see for example [RS]. Also, note that formula
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(2.7) is obviously of the form (1.15): the loss term corresponds to the con-
tributions due to e1=·· ·=el=0, and the gain term corresponds to all
other contributions. We refer to [Ca1] for the proof of (2.7). Finally, note
that (2.7) readily follows from the compact formulation (2.8)–(2.9) upon
solving (2.9) iteratively to express g in terms of f, and upon writing the
integral term on the right-hand-side of (2.8) under the form l;1

e=0 >Rd
(−1) e [iV̂(k)] g(n− ek, p+ẽp) dk (see [Ca1] for details).

(iii) We refer to [Ca1] (comments after (2.2)) for other questions
concerning the precise regularity and support assumptions on V̂. Note also
that formulae (2.8) and (2.9) are essentially formula (3.23)–(3.24) in
[Ca1]. L

Having now given the explicit form of the series expansions in l which
give the values of S ld, S1, and S2, we are in position to prove the identity
(1.16) of our main Theorem. This is done in two steps. First we give a
convenient power series expansion relating the auxiliary function g in terms
of f in (2.8)–(2.9). This relies on Lemma 1. Then, we insert the value of g
in equation (2.8) and turn to identifying the gain and loss terms.

2.2. Computing g in (2.9)

The two main results of this subsection are the following,

Lemma 1. The following identity holds true in the distribution
sense in the variables n, m, p in Rd, when d \ 3,

D(n, p)[D(n, m)+D(m, p)]=D(n, m) D(m, p) (2.12)

From Lemma 4 both sides of (2.12) are defined in the distribution sense,
when tested against functions of SD(R3d).

Lemma 2. Under the assumptions of Theorem 1, the auxiliary dis-
tribution g appearing in (2.9) admits the following expression,

g(t, n, p)=C
l \ 1
l l 5al(n, p) f(t, n)+bl(n, p) f(t, p)

+F
R
d
cl(n, m, p) f(t, m) dm6 (2.13)

up to defining,

al(n, p)=F
R
d(l−1)
D(n, p) D(n, k1) · · ·D(n, kl−1)

×V̂l(n, k1,..., kl−1, p) dk1 · · · dkl−1 (2.14)
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bl(n, p)=(−1) l F
R
d(l−1)
D(n, p) D(k1, p) · · ·D(kl−1, p)

×V̂l(n, k1,..., kl−1, p) dk1 · · · dkl−1 (2.15)

cl(n, m, p)=C
l−2

s=0
(−1) s+1 F

R
d(l−2)
D(n, m) D(k1, m) · · ·D(ks, m)

×D(m, ks+1) · · ·D(m, kl−2) D(m, p)

×V̂l(n, k1,..., ks, m, ks+1,..., kl−2, p) dk1 · · · dkl−2 (2.16)

Remark 3. From Lemma 4 and the regularity of the distribution f,
the distributions appearing above are well defined: more precisely, for any
test function k(n, p) the following is easily established,

:F t
0
ds F

R
2d
g(s, n, p) k(n, p) dn dp : [ C

l \ 1
|l| l ||V̂|| lS2D(Rd) ||k(n, p)||S2D(R2d) L

(2.17)

Proof of Lemma 1. The proof relies on the following observation:
from Lemma 4 the left-hand-side of (2.12) is,

=lim
aQ 0

i
n2−p2+ia

5 i
n2−m2+ia

+
i

m2−p2+ia
6

hence,

=lim
aQ 0

i
n2−p2+ia

i(n2−p2+2ia)
(n2−m2+ia)(m2−p2+ia)

=lim
aQ 0

1 −1
(n2−m2+ia)(m2−p2+ia)

−
ia

(n2−p2+ia)(n2−m2+ia)(m2−p2+ia)
2

=lim
aQ 0
(Da(n, m) Da(m, p)+a Da(n, p) Da(n, m) Da(m, p))

=D(n, m) D(m, p) L

Proof of Lemma 2. As mentioned in Remark 3, the fact that all
distributions appearing in Lemma 2 are well-defined, and the series in
(2.13) indeed converges, is easily proved by means of Lemma 4.

Now, the proof of formulae (2.14)–(2.16) is obtained by induction.
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Upon solving (2.9) iteratively, it is obvious that g admits a power
expansion (in l) of the form (2.13). Also, we readily obtain the lower order
term of this expansion,

g(t, n, p)=−ilD(n, p) V̂(n−p)[f(t, p)−f(t, n)]+O(l2)

This gives the first terms of the expansion (2.13), namely,

a1(n, p)=+iD(n, p) V̂(n−p)

b1(n, p)=−iD(n, p) V̂(n−p)

c1(n, m, p)=0

as claimed in (2.14)–(2.16).
We compute the next coefficients by induction. Assume that al, bl and

cl are indeed given by (2.14)–(2.16). Then, using Eq. (2.9), we easily obtain
that the next coefficients al+1, bl+1, and cl+1 are given by,

al+1(n, p)=iD(n, p) F
R
d
V̂(k−p) al(n, k) dk (2.18)

bl+1(n, p)=−iD(n, p) F
R
d
V̂(n−k) bl(k, p) dk (2.19)

cl+1(n, m, p)=−iD(n, p) 5V̂(n−m) al(m, p)−V̂(m−p) bl(n, m)

+F
R
d
[V̂(n−k) cl(k, m, p)−V̂(k−p) cl(n, m, k)] dk6

(2.20)

Clearly, (2.18) together with the value of al give the correct value of al+1
given by (2.14), and the same holds for bl+1. There remains to compute
cl+1. For that purpose, we insert the values of al, bl and cl in (2.20) and
obtain,

cl+1(n, m, p)=−D(n, p) 5F
R
(l−1) d
V̂1(n, m) D(m, p) D(m, k1) · · ·D(m, kl−1)

×V̂l(m, k1,..., kl−1, p) dk1 · · · dkl−1

−(−1) l F
R
(l−1) d
V̂1(m, p) D(n, m) D(k1, m) · · ·D(kl−1, m)

×V̂l(n, k1,..., kl−1, m) dk1 · · · dkl−1
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+F
R
(l−1) d
V̂1(n, k) C

l−2

s=0
(−1) s+1 D(k, m) D(k1, m) · · ·D(ks, m)

×D(m, ks+1) · · ·D(m, kl−2) D(m, p)

×V̂l(k, k1,..., ks, m, ks+1,..., kl−2, p) dk dk1 · · · dkl−2

−F
R
(l−1) d
V̂1(k, p) C

l−2

s=0
(−1) s+1 D(n, m) D(k1, m) · · ·D(ks, m)

×D(m, ks+1) · · ·D(m, kl−2) D(m, k)

×V̂l(n, k1,..., ks, m, ks+1,..., kl−2, k) dk dk1 · · · dkl−26

Now we treat separately the case s=0 in the second sum over s, and set
k=kl−1 in the corresponding integral. Also, we treat separately the case
s=l−2 in the first sum over s, and make the change of variables k Q k1,
k1 Q k2,..., kl−2 Q kl−1 in the corresponding integral. The remaining terms
in the two sums over s are treated as follows: in the second sum, we simply
change variables k Q kl−1 in the integral term; in the first sum we set
sQ s−1, and change variables k Q k1, k1 Q k2,..., kl−2 Q kl−1 in the
integral term. All these operations give,

cl+1(n, m, p)=F
R
(l−1) d
dk1 · · · dkl−1 1 −V̂l+1(n, m, k1,..., kl−1, p)

×D(n, p)[D(m, p) D(m, k1) · · ·D(m, kl−1)

+D(n, m) D(m, k1) · · ·D(m, kl−1)]

−(−1) l+1V̂l+1(n, k1,..., kl−1, m, p) D(n, p)

×[D(n, m) D(k1, m) · · ·D(kl−1, m)

+D(m, p) D(k1, m) · · ·D(kl−1, m)]

− C
l−2

s=1
(−1) s V̂l+1(n, k1,..., ks, m, ks+1,..., kl−1, p) D(n, p)

×[D(m, p) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl−1)

+D(n, m) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl−1)]2
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Hence, using Lemma 1 to simplify the above sums of D-distributions, we
obtain,

cl+1(n, m, p)=F
R
(l−1) d
dk1 · · · dkl−1 1 −V̂l+1(n, m, k1,..., kl−1, p)

×D(n, m) D(m, k1) · · ·D(m, kl−1) D(m, p)

−(−1) l+1V̂l+1(n, k1,..., kl−1, m, p)

×D(n, m) D(k1, m) · · ·D(kl−1, m) D(m, p)

− C
l−2

s=1
(−1) s V̂l+1(n, k1,..., ks, m, ks+1,..., kl−1, p)

×D(n, m) D(k1, m) · · ·D(ks, m)

×D(m, ks+1) · · ·D(m, kl−1) D(m, p)2

This ends the proof of Lemma 2. L

It is now an easy task to prove the main Theorem, as we do in the next
section.

2.3. Proof of the main Theorem

To prove our main Theorem, we establish the following,

Lemma 3. Under the assumptions of Theorem 1, we have,

(i) The cross-section S1 in Eq. (1.15) satisfies,

S1(n, k)= C
l \ 1
l l+1S1l (n, k)

S1l (n, k) :=2pd(n
2−k2) C

l−1

s=0
F
R
(l−1) d
(−1) s+1

×V̂l+1(n, k1,..., ks, k, ks+1,..., kl−1, n)

×D(k1, n) · · ·D(ks, n) D(n, ks+1) · · ·D(n, kl−1) dk1 · · · dkl−1

(ii) In particular, we have,

S1(n, k)=S ld(n, k)=2pd(n2−k2)|T(k, n)|2 (2.21)
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(iii) The cross-section S2 in Eq. (1.15) satisfies,

F
R
d
S2(n, k) dk= F

R
d
5C
l \ 1
l l+1S2l (n, k)6 dk (2.22)

F
R
d
S2l (n, k) dk :=F

R
ld
V̂l+1(n, k1,..., kl, n)[(−1) l D(k1, n) · · ·D(kl, n)

−D(n, k1) · · ·D(n, kl−1)] dk1 · · · dkl (2.23)

(iv) In particular, we have,

F
R
d
S2(n, k) dk=2p F

R
d
d(n2−k2) |T(n, k)|2 dk (2.24)

Remark 4. Our main theorem is a simple reformulation of parts (ii)
and (iv) of the above Lemma. Note also that all the distributions and
power series arising in the above Lemma are well-defined, thanks to
Lemma 4. We do not write the corresponding estimates. L

Proof of Lemma 3. Part (ii) of the Lemma is implied by part (i), by
virtue of formula (2.6). There remains to prove (i), (iii), and (iv). We first
prove (i) and (iii).

To do so, we insert the series expansion (2.13) of the function g into
(2.8), and identify the loss and gain terms. We write,

“tf(t, n)=l F
R
d
[V̂(n, k) g(t, k, n)−V̂(k, n) g(t, n, k)] dk

=C
l \ 1
l l+1dl(t, n) (2.25)

up to introducing,

dl(t, n)=−F
R
ld
V̂1(n, k)[D(k, n) D(k, k1) · · ·D(k, kl−1)

×V̂l(k, k1,..., kl−1, n) f(t, k)

+(−1) lD(k, n) D(k1, n) · · ·D(kl−1, n)

×V̂l(k, k1,..., kl−1, n) f(t, n)] dk dk1 · · · dkl−1

+F
R
ld
V̂1(k, n)[D(n, k) D(n, k1) · · ·D(n, kl−1)

×V̂l(n, k1,..., kl−1, k) f(t, n)
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+(−1) lD(n, k) D(k1, k) · · ·D(kl−1, k)

×V̂l(n, k1,..., kl−1, k) f(t, k)] dk dk1 · · · dkl−1

+C
l−2

s=0
F
R
ld
f(t, m)[(−1) s V̂1(n, k)

×V̂l(k, k1,..., ks, m, ks+1,..., kl−2, n)

×D(k, m) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl−2)D(m, n)

−(−1) s V̂1(k, n) V̂l(n, k1,..., ks, m, ks+1,..., kl−2, k)

×D(n, m) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl−2) D(m, k)]

×dm dk dk1 · · · dkl−2

Hence we recover, upon renaming the integration variables,

dl(t, n)=f(t, n) F
R
ld
V̂l+1(n, k1,..., kl, n)

×[(−1) l+1 D(k1, n) · · ·D(kl, n)+D(n, k1) · · ·D(n, kl)] dk1 · · · dkl

+F
R
ld
f(t, k)[−V̂l+1(n, k, k1,..., kl−1, n)

×D(k, n) D(k, k1) · · ·D(k, kl−1)

+(−1) l V̂l+1(n, k1,..., kl−1, k, n) D(n, k) D(k1, k) · · ·D(kl−1, k)]

×dk dk1 · · · dkl−1

+C
l−2

s=0
F
R
ld
f(t, k)(−1) s V̂l+1(n, m, k1,..., ks, k, ks+1,..., kl−2, n)

×D(m, k) D(k1, k) · · ·D(ks, k) D(k, ks+1) · · ·D(k, kl−2) D(k, n)

×dm dk dk1 · · · dkl−2

− C
l−2

s=0
F
R
ld
f(t, k)(−1) s V̂l+1(n, k1,..., ks, k, ks+1,..., kl−2, m, n)

×D(n, k) D(k1, k) · · ·D(ks, k) D(k, ks+1) · · ·D(k, kl−2) D(k, m)

×dm dk dk1 · · · dkl−2 (2.26)
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Clearly, formulae (2.25) and (2.26) establish formulae (2.22) and (2.23) for
the loss term in (1.15), so that (iii) is proved. There remains to identify the
gain term. From (2.26), we obtain,

S1l (n, k)=F
R
(l−1) d
5−V̂l+1(n, k, k1,..., kl−1, n) D(k, n) D(k, k1) · · ·D(k, kl−1)

+(−1) l V̂l+1(n, k1,..., kl−1, k, n) D(n, k) D(k1, k) · · ·D(kl−1, k)

+C
l−2

s=0
(−1) s V̂l+1(n, k1,..., ks+1, k, ks+2,..., kl−1, n)

×D(k1, k) · · ·D(ks+1, k) D(k, ks+2) · · ·D(k, kl−1) D(k, n)

− C
l−2

s=0
(−1) s V̂l+1(n, k1,..., ks, k, ks+1,..., kl−1, n)

×D(n, k) D(k1, k) · · ·D(ks, k) D(k, ks+1) · · ·D(k, kl−1)6

×dk1 · · · dkl−1

We treat separately the case s=0 in the second sum over s, as well as the
term s=l−2 in the first sum. Upon reindexing some variables, we obtain,

S1l (n, k)=F
R
(l−1) d
5−V̂l+1(n, k, k1,..., kl−1, n)

×[D(k, n)+D(n, k)] D(k, k1) · · ·D(k, kl−1)

+(−1) l V̂l+1(n, k1,..., kl−1, k, n)

×[D(k, n)+D(n, k)] D(k1, k) · · ·D(kl−1, k)

+C
l−2

s=1
(−1) s+1 V̂l+1(n, k1,..., ks, k, ks+1,..., kl−1, n)

×[D(k, n)+D(n, k)] D(k1, k) · · ·D(ks, k)

×D(k, ks+1) · · ·D(k, kl−1)6 dk1 · · · dkl−1

Observing that (see (2.4)),

D(n, k)+D(k, n)=2pd(n2−k2)

we obtain part (i) of the Lemma. This ends the proof of (i) and (iii).
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To prove (iv), we take a smooth test function f̃(n) ¥ C.c (R
d). We want

to evaluate the quantity,

A :=F
R
2d
[S1(n, k) f̃(k)−S2(n, k) f̃(n)] dn dk

To do so, we use the equivalence between formulae (2.8)–(2.9) and (1.15)
(or equivalently (2.7)). Thus, to f̃ we associate g̃(n, p) defined through
formula (2.9) with f(t, .) now replaced by f̃( .). We readily have,

A=−il F
R
2d
[V̂(n−k) g̃(k, n)−V̂(k−n) g̃(n, k)] dn dk (2.27)

Now, by virtue of Lemma 2 applied to f̃ and g̃, we obtain,

g̃(n, p)=C
l \ 1
l l 5al(n, p) f̃(n)+bl(n, p) f̃(p)+F

R
d
cl(n, m, p) f̃(m) dm6

(2.28)

where the coefficients al, bl, cl are given by formulae (2.14) through (2.16).
Lemma 4 now asserts that the change of variables (n, k)Q (k, n) is allowed
in (2.27), and we recover,

A=−il F
R
2d
[V̂(n−k) g̃(k, n)−V̂(k−n) g̃(n, k)] dn dk=0 (2.29)

Since (2.29) is valid for any smooth f̃, we obtain,

F
R
d
S1(k, n) dk=F

R
d
S2(n, k) dk (2.30)

as distributions in the variable n. This together with part (ii) of Lemma 3
establishes (iv). L

APPENDIX

Lemma 4. Let l ¥N, l \ 1. Let m, k1,..., kl be variables in Rd. Let
0 [ s [ l. Assume d \ 3. Then,

(i) the following distribution is well defined over R (l+1) d,

D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl) (A.1)
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with the convention that this distribution reduces to D(k1, m) · · ·D(kl, m) in
the case s=l,

resp. D(m, k1) · · ·D(m, kl) in the s=0. More precisely, for any
D \ d+1, there exists a constant C(D) such that the duality product of the
distribution (A.1) with a test function f(m, k1,..., kl) is bounded by,

C(D) l ||f||SD(R(l+1) d) (A.2)

The space SD(R (l+1) d is the space of functions having D moments and D
derivatives in L. as defined in (1.13).

(ii) For a > 0, let,

Da(n, p) :=F
+.

0
exp(i[n2−p2] s−as) ds (A.3)

Then, the following weak limit holds, upon testing against any test function
f in the space SD(R (l+1) d) (D \ d+1) appearing in (A.2),

lim
aQ 0
Da(k1, m) · · ·Da(ks, m) Da(m, ks+1) · · ·Da(m, kl)

=D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl) (A.4)

(iii) The statements analogous to (i) and (ii) above hold true when an
additional variable kl+2 ¥ Rd is given, and the distribution (A.1) is replaced
by,

D(k1, kl+2) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl)

or, D(kl+2, kl) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl)

or, D(k1, kl) D(k1, m) · · ·D(ks, m) D(m, ks+1) · · ·D(m, kl)

(A.5)

We refer to [Ca1], Lemma 3.1 and proof, for a proof of the above
Lemma.
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